Unsteady aerodynamic forces on small-scale wings: experiments, simulations and models
نویسندگان
چکیده
The goal of this work is to develop low order dynamical systems models for the unsteady lift and drag forces on small wings in various modes of flight, and to better understand the physical characteristics of unsteady laminar separation. Velocity field and body force data for a flat plate at static angle of attack and in sinusoidal pitch and plunge maneuvers are generated by 2D direct numerical simulations using an immersed boundary method at Re = 100. The lift of a sinusoidally plunging plate is found to deviate from the quasi-steady approximation at a reduced frequency of k = 0.5 over a range of Strouhal numbers. Lagrangian coherent structures illustrate formation and convection of a leading-edge vortex in sinusoidal pitch and plunge. A phenomenological ODE model with three states is shown to reproduce the lift on a flat plate at a static angle of attack above the stall angle. DNS for a 3D pitch-up maneuver of a rectangular plate at Re = 300 shows the effect of aspect ratio on vortical wake structure and lift. Wind tunnel experiments of a wing in single pitch-up and sinusoidal pitch maneuvers are compared with a dynamic model incorporating time delays and relaxation times to produce hysteresis.
منابع مشابه
The advantages of an unsteady panel method in modelling the aerodynamic forces on rigid flapping wings
This paper responds to research into the aerodynamics of flapping wings and to the problem of the lack of an adequate method which accommodates large-scale trailing vortices. A comparative review is provided of prevailing aerodynamic methods, highlighting their respective limitations as well as strengths. The main advantages of an unsteady aerodynamic panel method are then introduced and illust...
متن کاملNUMERICAL ANALYSIS OF MAVs FLAPPING WINGS IN UNSTEADY CONDITIONS
Today, Flapping Micro Aerial Vehicles (MAV) are used in many different applications. Reynolds Number for this kind of aerial vehicle is about 104 ~ 105 which shows dominancy of inertial effects in comparison of viscous effects in flow field except adjacent of the solid boundaries. Due to periodic flapping stroke, fluid flow is unsteady. In addition, these creatures have some complexities in kin...
متن کاملComputations on Wings with Full-Span Oscillating Control Surfaces using Navier- Stokes Equations
This paper presents a time-accurate procedure for computing unsteady aerodynamic forces on wings with a full-span oscillating control surface by using sheared grids. In this procedure, the flow is computed by solving the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with the one-equation Spalart-Allmaras turbulence model. A module to model control surface oscillations...
متن کاملModeling the unsteady aerodynamic forces on small-scale wings
The goal of this work is to develop low order dynamical systems models for the unsteady aerodynamic forces on small wings and to better understand the physical characteristics of unsteady laminar separation. Reduced order models for a fixed, high angle of attack flat plate are obtained through Galerkin projection of the governing Navier-Stokes equations onto POD modes. Projected models are comp...
متن کاملAerodynamic effects of flexibility in flapping wings.
Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast,...
متن کامل